Practical Machine Learning in R

With this book, machine learning techniques from logistic regression to association rules and clustering are within reach.

Practical Machine Learning in R

Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

More Books:

Practical Machine Learning in R
Language: en
Pages: 464
Authors: Fred Nwanganga, Mike Chapple
Categories: Computers
Type: BOOK - Published: 2020-04-10 - Publisher: John Wiley & Sons

Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and
Practical Machine Learning
Language: en
Pages: 468
Authors: Sunila Gollapudi
Categories: Computers
Type: BOOK - Published: 2016-01-30 - Publisher: Packt Publishing Ltd

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and
Practical Machine Learning with H2O
Language: en
Pages: 300
Authors: Darren Cook
Categories: Computers
Type: BOOK - Published: 2016-12-05 - Publisher: "O'Reilly Media, Inc."

Machine learning has finally come of age. With H2O software, you can perform machine learning and data analysis using a simple open source framework that’s easy to use, has a wide range of OS and language support, and scales for big data. This hands-on guide teaches you how to use
Practical Machine Learning with Python
Language: en
Pages: 530
Authors: Dipanjan Sarkar, Raghav Bali, Tushar Sharma
Categories: Computers
Type: BOOK - Published: 2017-12-20 - Publisher: Apress

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts,
Data Mining
Language: en
Pages: 371
Authors: Ian H. Witten, Eibe Frank
Categories: Computers
Type: BOOK - Published: 2000 - Publisher: Morgan Kaufmann

This book offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of